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2) When the crack tip enters the arrester section;
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4) When the initial reflected disturbance catches the crack tip, after the crack tip
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emphasized that while the specific failure mode discussed here is fracture, this parti-
cular selection of a failure mode is done only for illustrative specificity. In fact,
as indicated above, the "failure" could represent buckling of individual elements, loss
of joint integrity, rupture or any other energy-absorbing degradation process in a large
space lattice structure.
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0 INTRODUCTION

Space stations, satellite solar power stations, space communication

*• antennas, and space platforms are examples of orbiting large space struc-

tures proposed both for military and nonmilitary applications [1]. An

attractive design for large space structures is the construction of

* structures with a large number of repetitive lattice elements. However,

the static and dynamic analyses of large lattice structures using conven-

tional methods are cumbersome because of the large number of structural

*0 elements involved. Thus, methods have been devised such that large space

structures may be modelled adequately as equivalent anisotropic continua

[2-4].

* The dynamic failure (fracture, buckling, joint disassembly, etc.)

propagation and failure arrest behaviors of an equivalent continuum model

of space lattice structures will be considered in this study using concepts

• in fracture mechanics and wave propagation. For simplicity, the equivalent

continuum will be assumed to be orthotropic. Furthermore, the transverse

shear deformation of the equivalent continuum will be assumed to dominate.

*The geometry and material of the basic repetitive lattice structure are

such that the structure can be modelled as an orthotropic shear continuum.

Double cantilever beam models are well established fracture mechanics

G models in the study of crack propagation in a material continuum [5]. An

orthotropic double cantilever shear beam (DCSB) model will be used here

to study Mode I dynamic failure (which for convenience is assumed to be

-5-
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fracture) and arrest in continuum models of lattice structures. Ortho-

tropic DCSB models have been used to study crack propagation in composite

materials [6,7] and the results can be applied directly to continuum

* models of lattice structures.

The fracture behavior of a continuum is characterized by the dynamic

fracture toughness which is the incremental energy absorbed by the incre-

-0 mental crack extension. It is shown that for a velocity-independent

dynamic fracture toughness, the crack-tip speed is constant and the crack

is arrested abruptly when the reflected initial disturbance catches the

* crack tip in an orthotropic homogeneous DCSB model [6]. When a second

material region of semi-infinite width is introduced as a crack arrester

section, it is observed that with the proper choice of arrester materials,

• the crack can be stopped at the materials interface [7]. Furthermore,

if the crack is not stopped at the interface, the crack propagates in the

arrester section with a different constant velocity and the crack can

*0 then be stopped when the reflected initial disturbance catches the crack

tip. It is important to note, however, that the introduction of the

arrester section may actually degrade the structure if the crack is not

arrested at this point [7]. (The orthotropic DCSB mdoel containing a

semi-infinite width arrester region is denoted as the orthotropic duplex

DCSB model [7).)

In this study, an orthotropic DCSB model with a finite width

arrester section will be considered. The effect of the finite width

arrester section on crack propagation will be studied. In a specific

-6-



space lattice structure, the finite width arrester section might represent

a local region in the lattice structure where a different repetitive

lattice truss, a joint, a material change occurs. The continuum model

representing the primary space lattice structure will be denoted as the

primary material and the continuum model of the localized different region

will be denoted as the arrester material.

Again, it should be emphasized that while the specific failure mode

discussed here is fracture, this is done only for convenience and speci-

ficity. In fact, as already indicated, the "failure" could represent

buckling collapse of individual elements, loss of joint integrity, fracture

or any other energy-absorbing degradation process in the lattice structure.

-
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DCSB WITH FINITE WIDTH ARRESTER SECTION

The structure to be analyzed consists of a primary material and a

* finite width arrester section as shown In Fig. 1. The arms of the cracked

specimen are assumed to be shear beams. Thus, the shear beams exist in

the region O<x< t(t), where x is the coordinate in the direction of crack

* propagation, t is time, and t(t) is the time-dependent crack length. The

transverse displacement in each arm is denoted by w(x,t). The specimen

initially contains a crack of length to. The crack opening at x-0 is

maintained constant at 2w0 throughout the test. The primary material has

shear modulus G1 , mss density.p,, and a shear wave speed given by

C . (1)

The material In the arrester section has shear modulus G2 0 mass density

* P2, and a shear wave speed given by

C2 2 . (2)

The arrester strip is located at a distance Z. , which in order to
P1

encounter the moving crack tip must satisfy eqn. (3) of [7],

P< n0 (3)

where n Is the bluntness parameter. From the duplex specimen result [7],

it is known that at the primary material/arrester material interface the

-8-



crack may arrest with an arrest length IP If arrest does not occur at
P1

I , the crack may arrest later when the initial disturbance catches the
P1

crack tip with a corresponding arrest length k C as given in eqn. (51) of

[7 as

C I P"( ( ii+ X 0 2 ] (4)•C 2)t -)2

where 2. and 1 2 are the crack speeds in the primary and arrester sections,

respectively. For the finite width arrester section problem, it will be

assumed that the arrester strip extends from 2. and includes the region
P1

up to 1P2 whAich is less then XC" Thus,

P < k < " (5)
P1  P2  C

The boundary conditions and the initial conditions in terms of the

slope q and transverse velocity v are the same as those derived in [6].

The boundary conditions are

v - 0 at x-O (6)

*q + v - 0 at x=.(t) (7)

where v is the transverse velocity (aw/at) and q is the slope (aw/x).

The initial conditions are

v- 0 (8)

q O WO (9)
1q0

In addition, there are continuity matching conditions at the primary ma-

-9-
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terlal/arrester material interface and subsequently at the arrester mate-

rial/primary material interface. The equilibrium requirement on the shear

force across the interface may be expressed as

(Gq). (Gq)+ (10)
m+

and the geometric compatibility requirement on the transverse velocity

across the interface may be expressed as

v. M v+ 
(ll)

where the minus (-) subscript is used to denote the material just to the

left of the interface and the plus () subscript is used to denote the

material just to the right of the interface.

In an earlier paper [611, it was shown that in the orthotropic shear

beam disturbances propagate along characteristics, along which the fol-

lowing equations hold:

Csq - v - Constant along d- c (12)

S Cq + v - Constant along .L. -C (13)
dt s

where C is the shear wave speed of the material.
s

-10-



CRACK PROPAGATION AND ARREST CRITERIA

.,.

The dynamic fracture criteria are (7]

d = R. i = 1,2 (14)

and the fracture arrest criteria are [7]

g , < R. i=1,2 (15)d i

w.,ere 07 is the dynamic crack extension force and R is the dynamic frac-

ture toughness, both per unit of beam width. The dynamic fracture tough-

ness of the primary material ind the arrester material are denoted by R1

and R2, respectively. Both RI and R2 are assumed to be independent of

the crack-tip speed. The dynamic crack extension force is [7]

W, = G h L2 - q (.Z,t) i=1,2 . (16)

By setting L=0 in eqn. (16) and by using eqn. (14), the minimum

crack-tip slope qmin that is required to maintain crack propagation is [6]

qmin(i) h 1=1,2 . (17)

An equivalent fracture arrest criterion is

max q < qmin(i) i=1,2 . (18)

where max q is the umaximum crack-tip slope.

-11
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MOTION OF DCSB DURING CRACK PROPAGATION

At time t=O, the crack tip begins to propagate in the x direction.

The motion of the crack tip and the specimen arms may be described in

terms of the (x,t).plane as shown in Fig. 2. As the crack begins to ex-

tend, initial disturbances in the values of v(x,t) and.q(x,t) are pro-

pagated along line AB. At point B, these disturbances reflect from the

left-hand boundary x=O and then propagate back along line BC through

the arrester section. Disturbances may then reflect from the moving

crack tip at point C and propagate back toward the left-hand boundary.

Also, as the crack tip moves through the materials interfaces at points

H and S, disturbances are propagated 'zisard the left-hand boundary. Re-

flections at points such as P, Q, and R on the interfaces can be traced

in a similar manner.

In this simplified shear beam model, the finite size of the arrester

* section has no effect on crack propagation if the crack length Z(t) is

less than P2 . Thus, the results from the duplex specimen analysis [7]

are valid up to point S.

Crack Motion Just Beyond Point S

At any location in the (x,t) plane, the values of v(x,t) and q(x,t)

may be determined by following eqns. (12) and (13) along the character-

istics. The primary focus of this analysis is the behavior of the dynamic

crack extension force beyond point S. Because the dynamic crack extension
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depends on the crack-tip parameters, namely, the slope and the velocity,

the calculations which follow will be directed toward the determination

of these details at the crack tip.

*Q In order to determine the conditions along the crack-tip trajectory

beyond point S, the technique used in [7] to obtain crack-tip properties

just beyond point H will be applied. In Fig. 2 consider point 22 which

* is infinitesimally beyond point S and is on the crack tip. Also, consider

point 21 which is infinitesimally close to point 22 but which is on the

arrester material side of the interface. Because points 21 and 22 are

infinitesimally close but on different sides of the materials interface,

the matching conditions in eqns. (10) and (11) may be assumed to hold

between them. Similarly, points 4 and 5 represent the "same" location

• on the left-hand materials interface except that point 4 is in the pri-

mary material and point 5 is in the arrester material.

Considering Fig. 2, the characteristic eqns. (12) and (13) yield

* C2q5 - v 5  C2q21 - v2 1  (19)

C2q5 + v5 f C2 q2 + v2  (20)

r CIq 3 - v3 = Ciq 4 - v4  . (21)

Point 3 is below the initial disturbance line AB and is therefore in the

Initial state as described by eqns. (8) and (9),

r v3 - 0 (22)

q3  q0  ' (23)

Point 22 is on the crack tip, so the boundary condition in eqn. (7) gives

-13-



q 2 i,22 + v22., 0 (24)

The matching conditions (10) and (11) between points 21 and 22 are

G2q2 1 - GIq22 (25)

V 2 1 a V2 2  (26)

and the matching conditions (10) and (11) between points 4 and 5 are

* Glq 4 - G2q5  (27)

v 4 - v 5  . (28)

The state at point 2 is given by eqns. (24) and (25) of [7] as

q2 '(G (29)

(VT +

GI+ Cl)
'2% (30)

*As shown in Appendix A, eqns. (19) through (30) may be solved to give

q2 2  (2 2_ C2  ( )

(1 2 G4IG(2 4C
v22 - 2 2q22  (32)

where 2 is given by eqn. (31) of [7]. The crack speed at point 22 is

-14-



S2 which as shown In [7] may be determined from eqns. (14) and (16).

The value of i22 will not be computed, however, since only the crack

arrest conditions at point S are sought in this study.

Crack Arrest Conditions at Point S

The crack arrest criterion in terms of the crack-tip slope as given

by eqn. (18) will now be used. The minimum crack-tip slope required to

maintain a propagating crack in the primary material beyond point S will

be given by eqn. (17) as

qmin(]) " (33)

The maximum available crack-tip slope at a point, such as point 22, just

beyond point S is obtained for quasi-static crack extension (22 %0) from

eqn. (31) as

max q22 " q0  1G C +2 (34)

G2l C 2 lJ
Because point 22 is just beyond point S, according to eqn. (18) crack

arrest at point S requires

qmin(I) > max q22  " (35)

-15-
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*e Substitution of eqns. (33) and (34) into eqr. (35) gives

(4)oGI (36)

G 2
(C2 ) '2 C

2: + '- 2  C'

I> qO (36)

where as indicated earlier 2 is given by eqn. (31) of [7]. Eqn. (31)

G2

is the crack arrest criterion at point S. If eqn. (37) is satisfied,

the crack will arrest abruptly as the crack tip emerges from the arrester

sectiono

For the specimen shown in Fig. 1, the results from the duplex speci-

men analysis [7] hold until the crack tip reaches the right-hand bourdary

of the arrester section at point S. The duplex specimen analysis shows

that the crack may be arrested at the left-hand boundary of the arrester

section. This arrest condition is given by eqn. (32) of [7]. As shown

in Appendix B, this arrest condition can be simplified to

G1R

n - < R . (38)
G2 R2

-16-
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0 An alternate approach using eqn. (18) in terms of the crack-tip slope has

also been performed in Appendix B to yield the same result. Eqn. (38) is

the condition for crack arrest at point H.

•) Eqn. (37) is the crack arrest condition at point S. Eqns. (37) and

(38) are independent because eqn. (38) does not contain the shear wave

speeds whereas eqn. (37) contains the shear wave speeds as well as the

* relatively complicated £k" Thus, it is possible to design an arrester

strip system to arrest a crack when it enters the arrester by considering

eqn. (38) or when It exits the arrester section by considering eqn. (37).

V Therefore, the finite width arrester section gives an additional independ-

ent opportunity to arrest the crack before the reflected initial distur-

bance catches the crack tip at point C. As a further remark, it is In-

• teresting to note that whereas the crack arrest conditions at points H

and S are Independent, it is shown in Appendix C from the results of [7]

that the crack arrest condition at point C is always easier to satisfy

0 than the arrest condition at point H.

If the crack is arrested at point S, the crack arrest length is

is = LP2 (39)

The crack arrest time is

tS . tH + (k2 £) (40)

Replacing tH in eqn. (40) by the value given in eqn. (34) of (7) gives

-17-
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0

Eqns. (39) and (41) give the crack arrest length and time, respectively.

0

• 
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• CONCLUSIONS

Large space structures can often be modelled adequately as equiva-

* lent anisotropic continua. In this study concepts in failure mechanics

and wave propagation have been applied to analyze the dynamic failure

and failure arrest behavior of such an equivalent continuum. For speci-

• ficity, fracture is analyzed as the failure process, although buckling,

the loss of joint integrity or any energy-absorbing degradation process

in the lattice could have been considered.

* An orthotropic double cantilever shear beam (DCSB) model has been

analyzed to study Mode I dynamic fracture and arrest in continuum models

of lattice structures. The DCSB model consists of both a primary material

* and a finite width arrester section. For the DCSB model consisting of

orthotropic materials having a crack-speed-independent dynamic fracture

toughness, the DCSB model predicts that under the proper conditions the

crack may arrest abruptly as it enters the arrester region [7]. Further,

if the arrester has a finite width, the crack may arrest as it exits the

arrester region. The arrest condition at the exit of the arrester region

has been derived here and it is noted that this condition is independent

of the other arrest conditions. Also, the arrest conditions at the

entrance of the arrester region and at the point at which the initial

reflected disturbance overtakes the crack tip are compared. It has been

shown that the latter arrest condition is a less stringent condition

than the former, indicating that if the crack is not arrested at the

-19-



entrance of the arrester region, the crack may be arrested when the

initial reflected disturbance overtakes the crack tip beyond the

arrester section.

The results in this study have provided an analytical basis for

the investigation of dynamic failure propagation and failure arrest

in space lattice structures by applying fracture mechanics and wave

propagation techniques to an equivalent continuum material model of the

space lattice structure.

0
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--* APPENDIX A: CRACK-TIP VELOCITY AND SLOPE JUST BEYOND POINT S

Eqns. (19) through (30) can be solved to obtain the crack-tip veto-

* city and slope at point 22. Substitution of eqns. (22) and (23) into

eqn. (21) gives

CIq 0 a Clq 4 - v4 . (A)

0 Substitution of eqns. (27) and (28) into eqn. (Al) gives

CIq-C 1 q 5 "v 5  (A2)

Addition of eqns. (20) and (A2) and rearrangement of their sum give

• :q.- q IL (C2 q2 + v2 + Clq 0 ) (A3): 5 Gc 2 2

Substitution of eqn. (A3) into eqn. (20) gives

v5  C2 q2 + v2  1 (C G
2
(C zq2 + v2 + CI

q O )  (A4)

Replacing v2 2 in eqn. (26) by the use of eqn. (24) yields

v2 1 = -q 22*22 (A5)

Substitution of eqns. (25) and (A5) into eqn. (19) gives

C2 q5 - v5 - q2 2 (C2 G + 2 . (A6)

Substitution of eqns. (A3) and (Ak) into eqn. (A6) and solving for q22

give

-22-
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1 ( - 2 (C q + v2 ) + 2Clq 0

q2 2 ) . (A7)

C 2

(! + Ci -1)( GI + 1,22 ) G

2 2 2

Eliminating q 2 via eqn. (29) and v2 via eqn. (30) in eqn. (A7) yields

(G:2. 
) C2I

q22 - q0  (I + () (A8)

Also, from eqn. (32)

v2 2  - 2 2q2 2  (A9)

Eqns. (A8) and (A9) describe the crack-tip slope and velocity, respectively,

at point 22, which is a point on the crack tip just beyond point S.

-3
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) APPENDIX B: CRACK ARREST CRITERION AT POINT H

The crack arrest criterion at point H is given In eqn. (32) of [7] as

G 2  R1 I G2pIR 2
+ n I- -(; <)

2 G1  2 1

Eqn. (BI) can be manipulated to give

p 2 + n I G2 R < 0 (B2)

Because the terms in the first set of parentheses on the left-hand side

job of eqn. (B2) are always positive, the satisfaction of the inequality

(B2) requires that

n 1)2 
< R 1  (B3)

2 2

Thus, expression (B1) can be simplified to expression (B3).

Eqn. (Bi) was obtained by setting i <0 after using the fracture cri-

*teron in eqn. (14) and the crack driving force in eqn. (16). An alter-

nate method is to consider the crack-tip slope and to use eqn. (18) to

derive the crack arrest conditions. The minimum crack-tip slope required

to maintain a propagating crack in the arrester material is given by eqn.

(17) as

46qm n 2 2 (134)

The maximum available crack-tip slope at a point just beyond point H,

-24-
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7 7

*' such as point 2 in Fig. 3 of [7], is obtained for quasi-static crack

extension (i2 0) from eqn. (24) in [7] as

_ max q 2 = q2 o (85)

.2

Because point 2 is-just beyond point H, for crack arrest at point H eqn.

(18) requires that

qmin(2) > max q2  " (B6)

Substitution of eqns. (B4) and (85) into eqn. (86) gives

G q 0o (B7)

Replacing qo by eqn. (30) of [1], eqn. (B7) becomes

* G1R1  (8
> n .(B8)

Eqn. (B8) is identical to eqn. (B3) as expected. As a check, by setting

G I G 2 and R1 = R2 eqn. (83) or eqn. (B8) indicates that the crack will not

arrest because l #n. Recall that in accordance with [6], if there is no

arrester section, the crack will not arrest until the crack tip reaches

point C, the point at which the reflected initial disturbance catches the

crack tip. Finally, it is interesting to note that the materials' den-

sities, and thus the shear wave speeds, do not affect the crack arrest

criterion.
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APPENDIX C: COMPARISON OF CRACK ARREST CRITERIA AT POINTS H AND C

The crack arrest condition at point H as the crack tip enters 
the

I arrester section is given in eqn. (38) as

,. G1IR 1
G R 1 > n 2R2 .(el)

22

Also, in a duplex specimen, the crack arrest condition at point C is

given in eqn. (67) of [7] as

11 2 GIC2)(C G2 )

2G 12

Eqn. (C2) can be manipulated as follows:

( )j (1)G V)

[> (

or, (C

-26-
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C/ GI(C2 +

S(Eqn. (C) may be rewritten as

I > (c0)

Eqn. (C) is the arrest condition at point H while eqn. () is the arrest

Scondition at point C, where it -is emphasized that in this discussion point

C is -within the arrester section. The dependence of eqns. (C11) and (C4)

• is of interest.
-If the crack is not arrested at H, then from eqn. (0)

.2,< I (C5)
4) GIR I

~Thus, the crack proceeds to point C and encounters the arrest condition

iO represented by eqn. %'C3). For this case, because eqn. (C5) is known, the

." crack will not arrest if the right-hand side of eqn. MC) is equal to or

* iA larger than unity. So the crack may be arrested at point C if the right-

ihand side of eqn. e ) is less than unity, that is, if

-22



C I 

ofExpessn (C) will be maimpied bylttigO hs xrsin(6

C2 G 1 2

12

+--- <--+1
1 I 2 C1 G2

or,

L < 1 (c8)

n
The condition (C8) is always valid because n is always greater than unity,

and so expression (C6) will always hold.

Thus, the right-hand side of expression (C3) is less than unity and so

the condition (C3) is less stringent than the condition (Cis). Therefore,

if the crack is not arrested as it enters the arrester section, it may

arrest within the arrester section at the point where the reflected initial

< 0

disturbance catches the crack tip.
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Fig. 2. The (xt) plane showing the crack-tip trajectory and certain

characteristic lines for evaluating the crazk-tip conditions
at point 22.
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